
Additional info by GAS program GasVolaUnivMain

This document gives additional information users should know before implementing the

program GasVolaUnivMain.m. The class of volatility models covered by the program is

given by
yt = µ+ σ(ft)ut, ut ∼ pu(ut; θ),

ft = ω +

p∑
i=1

Aist−i +

q∑
j=1

Bjft−j, t = 1, . . . , n,
(1)

with pu(ut; θ) a standardised disturbance density, σ(ft) a link function and st the scaled

score. The parameter vector θ is given by

θ = (ω,A1, . . . , Ap, B1, . . . , Bq, µ, ν) , (2)

and is estimated by the method of maximum likelihood. The parameter which represents

the degrees of freedom ν in (2) is estimated only when the standardised disturbance density

pu(ut; θ) is Student’s t. The user of the program is referred to Creal, Koopman, and Lucas

(2013) for more explanation on GAS models.

User input
The user input is located between line 19 and 38 of the program. The following code is

copied from the program.

19 mdata = xlsread(’DJInd19801999.xls’);

20 vy = mdata(2:end,5)’;

21 dscaling = 1; % Scaling data can improve stability, 1 for no scaling

22 vy = vy.*dscaling;

23 % Distribution: GAUSS, STUD_T

24 idistribution = GAUSS;

25 % Link function: SIGMA (f_t=sigma^2_t), LOG_SIGMA (f_t=log(sigma^2_t))

26 ilinkfunction = LOG_SIGMA;

27 % Scaling score: INV_FISHER, INV_SQRT_FISHER

28 iscalingchoice = INV_FISHER;

29 % Order of GAS model p, q

30 ip = 1; iq = 1;

31 % Standard erros: HESS, SAND

32 istderr = HESS;

33 % Starting values (note the dimensions of ip and iq)

34 domega = 0.01;

35 vA = 0.10; % Extend for higher orders of p, use vector vA = [a ; b ; c ; ..];

36 vB = 0.89; % Extend for higher orders of q, use vector vB = [a ; b ; c ; ..];

B_1 + ... + B_q < 1

37 dmu = 0;
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38 ddf = 5; % Only estimated if idistribution = STUD_T

The user input starts by loading the data which needs to be analysed (code line 19). The

dataset DJInd19801999.xls, available from the same source this document comes from, is

loaded as example. In some cases the optimising process becomes more stable if the data is

scaled by a factor (code line 21). If the data are returns, a factor of 100 should work well.

1. Choice of disturbance density, (code line 24): available choices are GAUSS and STUD_T.

2. Choice of link function σ(ft) (code line 26): available choices are SIGMA (ft = σ2
t ) and

LOG_SIGMA (ft = logσ2
t ). The LOG_SIGMA option is generally more stable.

3. Choice of scaling of the score, (code line 28): available choices are INV_FISHER and

INV_SQRT_FISHER.

4. Order of the GAS model, (code line 30): available choices are any integer > 0 with a

maximum dependent on what the data can identify.

5. Choice of standard error type, (code line 32): available choices are HESS (empirical

Hessian) and SAND (sandwich estimator).

6. Starting values for the maximising algorithm, (code line 34 to 38): if the link function

is specified as SIGMA, the parameter ω is restricted to be ω ≥ 0 which is guaranteed by

a log transformation of the parameter in the model. No actions for this are required by

the user. The user needs to extend the vector of starting values for vA (code line 35)

and vB (code line 36) to the number equal to s_ip and s_iq (code line 30), respectively.

The sum of the elements in vB cannot exceed 1. Note that obtaining a global maximum

is not always guaranteed and trying different starting values could be useful in some

situations.

Computational details

1. Standard errors of the MLE are calculated by inverting the numerically computed

Hessian matrix and applying the delta method to the transformed parameter(s).

2. The unconditional mean of ft is used as initial condition given by f0 = ω(1−B)−1.

3. The first max(s_ip, s_iq) observations do not contribute directly to the likelihood

function as described in, for example, Tsay (2005) p107.

Model output

1. The program output are the BFGS iterations, the maximized log likelihood value and

the estimated parameters + standard errors.

2. A figure is plotted with the estimated volatility σt in the top panel, the score ∇t in

the mid panel and the scaled score st = St∇t in the bottom panel, all for t = 1, . . . , n

where St is the scaling matrix which depends on the choice of the user.
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Example
We illustrate the working of the model with an example. The user input starts at line 249 and

ends at line 267. This program comes with a data set of weekly continuously compounded

returns from the Dow Jones between 1980 and 1999. The data does not need to be scaled

as it won’t give any problems with estimating the parameter vector. We start the analysis

of the data by selecting the following options

s_iDistribution = GAUSS;

s_iLinkFunction = LOG_SIGMA;

s_iScalingChoice = INV_FISHER;

s_ip = 1; s_iq = 1;

s_iStdErr = HESS;

and starting values

domega = 0;

vA = <0.10>’;

vB = <0.89>’;

dmu = 0;

Note that a starting value for ddf does not need to be specified (any number will do). After

running the program the output should say

fminunc stopped because the size of the current step is less than

the selected value of the step size tolerance.

Log Likelihood value = 2502.14

’omega’ [-0.9962] [ 0.3319]

’A1’ [ 0.1008] [ 0.0226]

’B1’ [ 0.8724] [ 0.0425]

’mu’ [ 0.0028] [5.9725e-004]

The program should converge in around 27 iterations which takes less than 10 seconds on

a modern desktop pc. The maximum likelihood estimate for omega is −0.9962. A negative

value is allowed because we selected the link function LOG_SIGMA which guarantees positive

values for the estimated volatility. The output window should be like the one showed in

Figure 1. Next, we change the distribution to the Student’s t distribution. For this we

change the input block to

s_iDistribution = STUD_T;

s_iLinkFunction = LOG_SIGMA;

s_iScalingChoice = INV_FISHER;

s_ip = 1; s_iq = 1;

s_iStdErr = HESS;

and starting values
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domega = 0;

vA = <0.10>’;

vB = <0.89>’;

dmu = 0;

ddf = 5;

After running the program the output should now say

fminunc stopped because the size of the current step is less than

the selected value of the step size tolerance.

Log Likelihood value = 2530.95

’omega’ [-0.2746] [ 0.1330]

’A1’ [ 0.0661] [ 0.0158]

’B1’ [ 0.9648] [ 0.0170]

’mu’ [ 0.0032] [5.6747e-004]

’df’ [ 7.3430] [ 1.4702]

with the output window as showed in Figure 2. As can be seen from Figure 2, the reaction

of the model to the Black Monday crash is very different compared to the Gaussian model.
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Figure 1: Gaussian: estimated volatility, score and scaled score
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Continuously compounded return and estimated volatility
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Time Series Plot:Scaled score

The top panel shows the weekly continuously compounded return from the Dow Jones between 1980 and
1999 and the estimated volatility. Note the big spike in volatility caused by the Black Monday crash of
October 19, 1987. The mid panel shows the score and the bottom panel shows the scaled score.
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Figure 2: Student t: estimated volatility, score and scaled score
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Continuously compounded return and estimated volatility
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Time Series Plot:Scaled score

The top panel shows the weekly continuously compounded return from the Dow Jones between 1980 and
1999 and the estimated volatility. The mid panel shows the score and the bottom panel shows the scaled
score.
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