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Abstract

I study a Dynamic Conditional Score model for modelling volatilities, or

the uncertainty, (Beta-t-EGARCH) with Random Level Shifts (RLS) following

the work of Qu and Perron [Econometrics Journal (2013) vol. 16, pp. 309�

339] in �nancial markets. The addition of random level shifts can explain

the high persistence typically estimated for these series, this constitutes an

alternative approach to the long memory or two component models. I also

model the asymmetries between returns and volatility within this framework.

Hence, I model the uncertainty in the Peruvian Stock and Forex Peruvian

market using daily data from the last two decades. The estimates of the

RLS component and volatilities �ts well the main disturbance events in the

period of study. I study how the volatilities of both markets match a model of

short memory plus RLS. Finally, I carried out Monte Carlo simulations which

shows how accurate is the model proposed, since is able to follow the time

and spectral domain properties of the original series.



Contents

1 Introduction 1

2 Literature Review 4

3 Methodology 6

3.1 The SV framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Priors and Sampling for the Posterior Distributions . . . . . . 8

3.1.2 Filtering for Latent Variables . . . . . . . . . . . . . . . . . . 10

3.2 A Beta-t-EGARCH model with Random Level Shifts . . . . . 11

3.2.1 GARCH and t-GARCH . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Beta-t-GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.3 Beta-t-EGARCH . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.4 RLS-Beta-t-EGARCH . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Modelling Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Uncertainty Dynamic in the Peruvian Financial Markets 16

4.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Random level shifts smoothed estimates . . . . . . . . . . . . . . . . 16

4.3 Fitting RLS-Beta-t-EGARCH models . . . . . . . . . . . . . . . . . . 18

5 Monte Carlo Simulations 20

5.1 The experimental design . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Spurious long memory? . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Conclusions 23

7 Annex 30

7.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



1 Introduction

A recent observation driven approach for modelling �nancial series denominated

Dynamic Conditional Score (DCS) models of Harvey (2013) or also known as Gen-

eralized Autoregressive Models as in Creat et al. (2011, 2013) is emerging as an

alternative to the traditional Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH) and Stochastic Volatility (SV) models. According to Harvey (2013),

this model o¤er a �exible structure as it gives a uni�ed framework to modelling time

varying parameters. For example, the location or the scale of a heavy tailed dis-

tributions, or for modelling time varying correlation, dynamic copulas proposed in

Oh and Patton (2017), the modelling of time between trades in stock markets with

duration models. Also, we can �nd current contributions for the study of censored

distributions as in Harvey and Ito (2017). They study time series with a considerable

amount of zeroes in the data.

In particular, little work has been made in the study of why DCS models esti-

mates a high persistent scale/volatility. Harvey (2013), for instance, consider a two

component model which aims to capture somewhat the persistence in the volatility

using jointly a long memory and the short memory process. In this dissertation, I

study a new approach in order to model the persistence of volatilities (uncertainty)

within a DCS framework, typically displayed in high frequency data. To do so, I

follow the idea of Qu and Perron (2013) (QP) that random level shifts and a short

memory component can reproduce the main features of these series. Hence, I modify

the Beta-t-EGARCH model for volatilities of Harvey (2013).

This observation driven model does not su¤er from the nonexistence of moments

as the EGARCH model of Nelson (1991) and at the same time this model allows

modelling directly the volatility through the scale of the t-Student distribution. To

my best of knowledge, this is the �rst work to address the high persistence of series

with random level shift (RLS) in a DCS setting. Others related models consider

change in regimen using a Markov Switching model as in Bazzi et al. (2017) and

Blazsek and Ho (2017). However, both models are limited to study of up to two

regimes. In this dissertation multiple regimes are modelled for the Peruvian Stock

and Forex markets volatilities.

There are numerous studies exploring the causality relationship between eco-
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nomic growth and the dynamic of stock markets. Enisan and Olu�sayo (2009) �nd

a positive relationship for a group of emerging countries. Levine (2006) argues that

investors who buy and sell liquid instruments in this market trigger the transmis-

sion channel from �nancial to real sectors. Though inaugurated at the beginnings of

1990s, the Lima stock market have growth steeply. For instance, by 2016 the stock

market listed 283 of the main companies of the country and had a stock valuation

of around 125 000 millions USD, which meant 66 per cent of the gross domestic

product at that age.

Likewise, the understanding about the dynamics of the forex market is crucial

in a dollarized economy as the Peruvian. Grippa and Gondo (2006) explains how

high uncertainty in the forex market can damage the �nancial conditions of individ-

uals who owns debt or take loans in the foreign currency. According the In�ation

report of the Central of Peru in 2016 the dollarization of credits and in the liquidity

reached levels of 29 percent and 49 percent respectively. No much study about these

Peruvian �nancial markets has been made until the work of Humala and Rodriguez

(2013). A more recent study is made in Alvaro et al. (2017). They apply the

QP model to six commodities prices that highlight the importance of shifts in the

modelling of uncertainty. The main contribution of this dissertation is the incorpo-

ration of random level shifts a la QP into the Beta-t-EGARCH model. Using the SV

speci�cation of Qu and Perron (2013) I estimate the multiple regimes that governs

the uncertainty in both markets, then I add these estimates to the DCS model of

Harvey (2013) to �nally estimate the whole model in a two-step procedure.

I �nd that the persistence of a shock in a model without RLS for both �nancial

markets has a half-life of around 90 days. Nonetheless, if we model for RLS within

the Beta-t-EGARCH model the e¤ects of shocks last a few more that 10 days each.

This results show the importance of modelling multiple regimes in the volatility be-

cause this will have a signi�cant e¤ect in the forecast of the duration of shocks, and

hence, in the transitory e¤ects of a shock to the volatility. The regimes detected co-

incide with periods of very high uncertainty mainly from the internal election which

happens around the national elections where the left candidate Humala exchaerbit

the investment behavior with the named "Peruvian Black Monday" where the index

lost 12 percent its value, thus with immediate consequences not only in the stock
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market but in the forex market, due to the out�ows of speculative international

investors. Likewise, another big event which a¤ected �nancial markets globally was

the �nancial crisis in 2008, having a strong impact to the economy which that year

did not growth after 10 years.

Interestingly, for the forex market after those great crashes the upward level shifts

it revert within few months to levels before the crash. This is due to the intervention

of the Central Bank of Peru which has a �oating regime system in which they aims

not to directly control the volatility but they have as a policy smooth the path

of the volatility against times of high uncertainty. In this line in order to study

the di¤erent reactions of the dynamics of the volatility from shocks in its process

I modify the model to include asymmetries between returns and the volatility. For

the stock market the results reveals a positive sign for the leverage parameter. In

other words, a negative shock to the stock market originating more volatility than a

positive shocK. Alike, for the forex volatility dynamics I found a negative elasticity.

Positive shocks in this market are conceived as currency depreciation shocks and

therefore, in a partially dollarized economy, it have a big impact in the uncertainty

for people who owns credit in this money, but receives earning in the local currency.

As a result, a negative coe¢ cient for the asymmetries means that depreciation e¤ects

rather than appreciation generates more uncertainty in the Forex market. Thus, the

Central Bank should be relatively aware when the local currency lose its value and

try to mitigate the uncertainty in this market.

Further, I �nd from the log periodogram of Perron and Qu (2010) that both �-

nancial series present patterns which match a process for short memory in volatility

and level shifts. As argued in Perron and Qu (2010) the rapid decay in the spectral

log periodogram at higher frequencies is a proper characteristic of series with short

memory and random level shifts. Hence, other models such as of the fractional inte-

gration or a two component models that aim to estimate directly the long memory

parameter may not be appropriate. Monte Carlo simulations show that the model

proposed here is able to match the time and frequency properties of the empirical

series, due they assume per se the existence of are not of the best and those results

are corroborated
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2 Literature Review

One of the main contribution in the study of time varying volatilities is the Autore-

gressive Conditional Heteroscedasticity (ARCH) model of Engle (1982), which he

uses to study the UK in�ation volatility. One main drawback of this model comes

from the highly persistent estimated volatility, as a result, numerous lags are neces-

sary to control it, and this may imply the estimation of negative parameters and the

requirement to impose additional restrictions. Bollerslev (1986) overcome these lim-

itations and propose the Generalized Autoregressive Heteroscedasticity (GARCH)

model. This model can group the extensive lags of the ARCH model by adding as

an explanatory variable for the volatility, a lag term of it.

On the other hand, models that assume an unobservable process for the volatility

is the family of Stochastic Volatility (SV) models. In its discrete version, Jaquier

et al. (1994) analyses di¤erent approaches to estimate the SV model, he found

that the Bayesian estimation gains in e¢ ciency with respect to the Quasi maximum

likelihood of Harvey et al. (1994), who uses a Kalman �lter methodology, since it is

a relatively more e¢ cient algorithm for the convergence of the parameters to their

true values.

Nonetheless, there is a recent approach from the Dynamic Conditional Score

theory of Harvey (2013) and Creal et al. (2011, 2013)1. The main advantages from

this view is that it encompasses the GARCH in a more �exible setting, at the same

time it surpass their major limitations such as the restriction in the parameters of

models. Harvey (2013) highlights the robustness of the model to outliers or atypical

observations when a t-Student version of the model is taken into account.

A concern in the literature of �nancial series is the high persistence of the con-

ditional or latent volatilities when estimated, some studies treat this phenomenon

as series with long memory. This series are characterized by a hyperbolic decay

in their autocorrelation functions, in other words, a shock has a long persistence.

Using proxies of volatilities such as the absolute value of the returns, Hosking

(1980) and Granger and Joyeux (1980) propose the fractional integration model,

the ARFIMA(p; d; q) and d > 0 implies that a long memory is present in the series.

In this line, Harvey (1998) and Breidt et al. (1998) model the fractional integral

1In this article the model is named Generalized Autoregressive Score (GAS).
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parameter d in a SV framework. For DCS models, Harvey (2013) performs a two

component model, where one process is of long memory and the other the short one.

Nonetheless, instead of model directly fractional integration, Diabold and Inoue

(2001) show how a long memory process can be confound with a model that incor-

porates a structural break. This idea is related to Perron (1989) where breaks in

a unit root setting can conduct to misleading results when the test is performed.

Likewise, Starika and Granger (2005) shows that level shifts account signi�cantly

in the dynamics of the unconditional variance of S&P 500. Perron and Qu (2010),

who also analyses this index, they carry out Monte Carlo simulations to show how

the short memory process and level shifts a¤ects the estimation of d and that this

mixture model mimics the main patterns such as the ACF and the periodogram of

these series.

How the volatility overreact from good news is studied by Nelson (1991) who

propose the model called exponential GARCH (EGARCH); given its exponential

nature, this speci�cation does not arise problem with non-negative values for the

coe¢ cients which could mean negative values for the volatility, if not adequate

restrictions are in place for the parameters. A similar work is made by Glosten

et al. (1993) and its model GJR-GARCH also studies the asymmetries generated

from unexpected positive or negative shocks over the following period conditional

volatility. On the side of SV models, the extension is made by Yu (2005) and Omori

et al. (2007), they incorporate asymmetries in the dynamics of the volatility for

model the S&P 500 and Asian stock markets. They developed Bayesian algorithms

in the search of gain in the e¢ cient of the algorithm. Given its adaptability, the

DCS model can be easily modi�ed to include leverage as in Harvey (2013) where he

apply this model to the indexes Hang Seng of Hong Kond and the Down Jones.

As mentioned before, little work on the study of �nancial market has been de-

veloped. A �rst study analyzing the main stylized facts of the Peruvian Markets is

Humala and Rodríguez (2013). In addition, competitive GARCH models are �tted

to these series in Rodríguez (2017) where several univariate speci�cations for the

conditional variance are compared and described. There is some literature of ap-

plied SV models to those returns as in the work of Alanya and Rodriguez (2014)

where through several statistics, they compare its performance relative to a Normal
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and t-Student GARCH model, showing the gains in �t of the former model. Re-

cently, Alvaro et al (2017) apply the RLS model of Qu and Perron (2013) to six

commodities returns. They �nd that the RLS process contributes signi�cantly to

the volatility process. In addition, they study their correlation with the main eco-

nomic activity index and found positive correlations with the business cycles of the

Peruvian economy.

The structure followed by this paper is as follows: Section 3 discusses the Beta-

t-EGARCH model with random level shifts and the procedure for its estimation.

Section 4 presents the main empirical �ndings in the application of the model for

the volatility to the Peruvian Stock and exchange rate returns. Section 5 shows

through Monte Carlo simulations the relevance of random level shifts as a new

approach to understand the high persistence in Dynamic Conditional Score models.

The conclusions are set out in the �nal section.

3 Methodology

This section presents the SV and DCS models for measuring the uncertainty. In the

same manner, this section introduces the Beta-t-EGARCH with random level shifts.

Here, it is also explained the main algorithms in order to estimate these �nancial

econometrics models.

3.1 The SV framework

Stochastic volatility models assume that volatilities follow a latent stochastic process.

An advantage of these kind of models against the GARCH models is that SV mod-

els assumes an independent process to the equation for volatilities, in contrast to

the GARCH family models where an unique innovation drives both the returns and

volatility. QP incorporate a random level shifts process to the canonical SV in order

to model the high persistence of �nancial series. The QP SV model for a demeaned
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series yt has the following representation:

yt = exp(ht=2 + �t=2)"t; (1)

ht+1 = �ht + ���t;

�t+1 = �t + ���t�t:

�t � B(1; p);

"t � N(0; 1);

�t � N(0; 1);

�t � N(0; 1);

where "t, �t, �t and �t are mutually independent distributed processes. ht is the

�rst order stochastic volatility at time t and �� its variance. The random level

shifts process, �t; follow a similar structure to the local level (LL) model and so it is

stochastic in nature, which is regulated by the innovation �t, but a main di¤erence

with LL is that RLS incorporate random jumps given by a Bernoulli sequence �t

which takes the value of 1 whit a probability of p and zero otherwise. In addition,

�� re�ects how much strong is the impact of a level shift in this stochastic process.

The starting value for both processes h0 and �0 are zero, meanwhile for their �rst

observations is assumed an a priori distribution such that (h1; �1)
0 � N(0; P ): Ac-

cording to Qu and Perron (2013), this time varying parameter model di¤ers from

long memory models, because the short memory process will have a transitory e¤ect

in the volatility, whilst the level shifts captures the permanent e¤ect until a new

change in the regime occurs.

Stochastic volatility models allows for a linear version which ease its estimation.

Hence, I take logarithms to the squares to the model in 1:

y2t = [exp(ht=2) + exp(�t=2)]
2 ("t)

2; (2)

log(y2t ) = �t + ht + log("
2
t );

ht+1 = �ht + ���t;

�t+1 = �t + ���t�t:
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A problem with this speci�cation comes from the error term, log("2t ); since if it

is assumed that a Gaussian distribution for "t, it will follow a �2 distribution. Thus,

if a state space system is estimated by quasi maximum likelihood as in Harvey et

al. (1994) assuming Gaussianity, this would lead to unbiased estimates, especially

when a short number of observations is used. Another approach is adopted in Kim et

al. (1998) who approximates "�t using a mixture of normal distributions, they show

that a mixture of 7 normal distributions
kX
i=1

qiN(mi; �
2
i ) with mean mi, variance �2i ,

and associated weights qi generate a closer �t to the density of log("2t ): I report the

values for the mixture of normals in Table 2. Hence, Qu and Perron (2013) de�ne a

new zero mean error term, "�t = log("
2
t )� E[log("2t )]; and the system becomes:

log(y2t + c)� E[log("2t )] = �t + ht + "�t ;

zt = �t + ht + "�t ;

ht+1 = �ht + ���t;

�t+1 = �t + ���t�t:

Note that it has been introduced the Fuller (1996) o¤set value c = 0:001 for the

returns zt in order to avoid values of the logarithm near to zero which may have

an e¤ect over the estimates of the model. Kim et al. (1998) de�nes !t = j if the

realization from the mixture comes from its jth component. This will allow for the

state space representation of the system.

3.1.1 Priors and Sampling for the Posterior Distributions

Stochastic volatility models are parameter driven models and so it requires th esti-

mation of latent variables �t = (ht; �t)
0. Firstly, it will be required the estimation

of the parameter of the model � = (�; ��; ��; p) using Markov Chain Monte Carlo

(MCMC) Bayesian algorithms from which is possible to approximate the likelihood

function f(yj�) =
Z
f(yj�; �)f(�j�)dh of the model. A closed form for the likeli-

hood does not exist as it entails unobservable variables, as argued in Jaquier et al.

(1994).

In the Bayesian formulation in order to obtain posterior distributions of the

parameters it is required the use of some believes, or priors, distributions according
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to the Bayes rule. A summary of the prior distributions employed and the implied

prior means distributions are shown in Table 3. In particular, it is settled from

the prior distribution that a shift happens each 41 days which given the size of the

sample would imply around 100 shifts in the whole period. Secondly, using particles

�lters algorithms �ltered and smooth estimates are obtained for the latent variables

of the model.

Hence, the sampling procedure of Qu and Perron (2013) which follows a Gibbs

Sampler algorithm is:

1. Initialize �1 = (h1; �1)
0, � = (�; ��; ��; p), R = [(�1; �1)

0; :::; (�n; �n)
0], � =

(�1; :::; �n), ! = (!1; :::; !n):

2. Sample �(�p) and the latent process R from the joint posterior distribution

f(�(�p); R; �1jp; �; !; y) = f(R;�1j�; �; !; y)f(�(�p)jp; �; !; y). The draws for
f(R;�1j�; �; !; y) are obtained from the De Jong and Shephard (1995) simu-

lation smoother. Further, the density f(�(�p)jp; �; !; y) is approximated iter-
atively from the Gibbs Sampler for each of the parameters in � = (�; ��; ��; p):

For instance, for the parameter �� and using the Bayes theorem: f(��jp; �; !; y) =
f(��jp; �; !; y)�(��). Through the Kalman �lter samples for f(��jp; �; !; y) are
generated; on the other hand �(��) is the prior distribution for ��: Then, both

draws are combined employing the Gilks et al. (1995) Metropolis Sampler.

3. Sample the shifts �t from f(�tj�; �(�t); R; �1; !; y): Samples are computed iter-
atively for t = n; n � 1; :::; 1 from the odds ratio, since it is computationally

more e¢ cient:

f(�t = 1j�; �(�t); R; �1; !; y)
f(�t = 0j�; �(�t); R; �1; !; y)

=

p
nQ

j=t+1

f(yjj�; �t = 1; �(�t); R; �1; !; Yj�1)

(1� p)
nQ

j=t+1

f(yjj�; �t = 0; �(�t); R; �1; !; Yj�1)
;

where Yt = (y1; :::; yt):

4. Sample the shifts probability p using f(pj�(�p); �; R; �1; !; y) = f(pj�) 1
f(pj�)f(p):
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5. Sample the mixture ! with f(!t = jj�; �; R; �1; y) = f(!t = jj"�t )1 f("�t j!t =
j)f(!t = j) where the marginal distribution for "�t is given by "

�
t j!t = j �

N(mj; �
2
j): In addition, QP suggest the reweighting procedure of Kim et al.

(1998) to deal with numerical approximations in the mixture sample step

within the algorithm.

3.1.2 Filtering for Latent Variables

The second block of variables for estimation in the SVmodel with random level shifts

involves the �ltering of latent processes for �t = (ht; �t)
0: The �ltering step will also

allow for the approximation of the log likelihood of the model and is the main input

for one or more step ahead forecasts. Qu and Perron (2013) adopted the particle

�lters of Gordon et al. (1993) and Kim et al. (1998) in order to approximate:

f(�t+1jYt+1; �) 1 f(yt+1j�t+1; Zt; �)
Z
f(�t+1j�t; Yt; �)dPf(�tjYt; �):

To do so, QP generate j = 1; :::;M samples �jt using (�tjYt;�). Then, the draws
for f(�t+1jYt+1; �) come from reweighting f(�t+1j�jt ; Yt; �) with !jt+1; where:

!jt+1 =
f(yt+1j�jt+1; Yt; �)PM
j=1 f(yt+1j�

j
t+1; Yt; �)

;

f(yt+1j�jt+1; Yt; �) � N(0; exp(hjt+1 + �jt+1)):

In addition, f(�t+1j�jt ; Yt; �) is a function of the probability that a level shift
happens at t, so that:

f(�t+1j�jt ; Yt; �) � �tW
j
1t + (1� �t)W

j
2t;

W j
1t � N

0@24 � 0

0 1

35�jt ;
24 �2� 0

0 �2�

351A ;

W j
2t � N

0@24 � 0

0 1

35�jt ;
24 �2� 0

0 0

351A :
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3.2 A Beta-t-EGARCH model with Random Level Shifts

This section introduces the foundation models for the RLS-Beta-t-EGARCH model

I propose in this dissertation. Hence I explain how these models are related to other

�nancial econometrics settings such as GARCH, and the relevance for the use of

DCS models which overcome limitations in the modelling of the uncertainty of these

models.

3.2.1 GARCH and t-GARCH

The �rst order GARCH model of Taylor (1986) and Bollerslev (1986) for the condi-

tional variance �tjt�12 of demeaned returns yt is:

yt = �tjt�1"t; (3)

"t � N(0; 1);

�2t+1jt = � + ��2tjt�1 + �y2t ;

with � and � are imposed to be non-negatives and � strictly positive. Note

that this model is a linear function of the lag of the conditional volatilities and also

function of past squared returns. Consider now the model in terms of its persistence

� = �+ �:

�2t+1jt = � + ��2tjt�1 + �[y2t � �2tjt�1];

�2t+1jt = � + ��2tjt�1 + ��t;

where �t is a martingale di¤erence (MD). Harvey (2013) highlights the impor-

tance of this speci�cation, in terms of a MD, which allows a link of the GARCH

model with the signal extraction principle of the Kalman �lter that is related to the

DCS approach for modelling volatilities.

2Andersen et al. (2006) adopt this notation instead of �t since it depends on up t�1 observations
and the estimation procedure involves �ltering procedures.
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3.2.2 Beta-t-GARCH

To examine more closely the relationship between GARCH and DCS models, let us

consider now the Beta-t-GARCH3 model of Creal et al. (2011, 2013) and Harvey

(2013):

yt = �tjt�1"t; (4)

�2t+1jt = 
 + ��2tjt�1 + ��2tjt�1ut;

ut =
(� + 1)y2t

(� � 2)�2tjt�1 + y2t
� 1;

ut � beta(1=2; �=2);

� > 2:

The conditional variance has persistence � and depends on the martingale di¤er-

ence component ut, through the elasticity with respect to the conditional volatility,

�: Further, the term ut follows a Beta distribution4 and this process is proportional

to the score of volatilities, �2tjt�1. To examine how is derived the score, let us consider

the t-Student distribution with scale �2tjt�1 and a location of zero has density:

f(y;�2tjt�1) =
�((� + 1)=2)

�(�=2)�2tjt�1
p
�(� � 2)

 
1 +

y2t
(� � 2)�2tjt�1

!� �+1
2

;

Thus, the log-likelihood for the observation yt is:

log fY (yt) = log

�
�(
� + 1

2
)

�
� log

�
�(
�

2
)
�
� 1
2
log((� � 2)��2tjt�1)

�� + 1
2

log

 
1 +

y2t
(� � 2)�2tjt�1

!
:

Hence, the �rst derivative of this expression with respect to �2tjt�1 will give the

3As appointed in Ito (2016), the Beta-t-GARCH model is a DCS model where a square root
link function for the volatility and an assumed centered standard t-Student distribution drives the
volatility process.

4This is why the model is called Beta-t-GARCH.
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score st and ut being proportional to it:

st =
@ log fY (yt)

@�2tjt�1
=
�2tjt�1
2

 
(� + 1)y2t

(� � 2)�2tjt�1 + y2t
� 1
!
;

st =
�2tjt�1
2

ut:

The idea of Harvey and Chakravarty (2009) and Harvey (2013) to model the

volatility using the score comes because it performs a better estimator for the con-

ditional variance when the degrees of freedom � is �nite as it would lead to a non

e¢ cient estimator for the variance. In contrast, when � goes to in�nite, the system

collapse to a standard GARCH model of Bollerslev (1986).

3.2.3 Beta-t-EGARCH

The central di¤erence from the Beta-t-GARCH is that the Beta-t-EGARCH model

uses an exponential function in order to model the scale of the t-Student distribution.

This link exponential function allows that volatilities always take non negative values

with the no necessity of impose any restrictions to its dynamics. Although Harvey

(2013) describe a representation where there is an equivalence between the Beta-t-

EGARCH model and the t-GARCH speci�cation. The model is given by

yt = exp(�tjt�1)"t; (5)

�t+1jt = !(1� �) + ��tjt�1 + �ut;

ut =
(v + 1)y2t

v exp(2�tjt�1) + y2t
� 1:

"t � t(v)

where ! is the unconditional mean for the process of scale/volatility, and ut is

proportional to the score as in the Beta-t-GARCH. We should bear in mind that

the scale and volatility are directly in this model, so that:

't+1jt = (v � 2)1=2�t+1jt;

�t+1jt = log('t+1jt):
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3.2.4 RLS-Beta-t-EGARCH

This speci�cation combines the Beta-t-EGARCH and level shift process so that the

model is able to capture the multiple regime for volatility. However, how the RLS of

the Qu and Perron model nest the Beta-t-EGARCH one? Fortunately, both models

features similar structures. A �rst issue comes from the normality assumption in

the SV model, however the level shifts and the multiple regimes estimated follows

an independent process of the short term component. A shock to this process has a

permanent e¤ect until the next structural break as argued in QP. Thus, we may think

that a t-Student model will not have much e¤ect in the quantity and magnitude of

the multiple regimen detected.

Hence, I add the volatility process estimated from the stochastic volatility frame-

work as an independent process of the score in order to understand the consequences

of the level shift process in the persistence of the process under the DCS setting,

which has no yet analyzed.

The model I propose to model the scale with RLS for �nancial returns is as

follow:

yt = exp(�tjt�1 + 
�t)"t; (6)

�t+1jt = !(1� �) + ��tjt�1 + �ut;

�t+1 = �t + ���t�t:

Where �tjt�1 represents the scale of a t-Student distribution ut is proportional

to the score of the logarithm of likelihood of a t-Student distribution One of the

advantages of the Beta-t-EGARCH related to other models such as GARCH is

that it models directly the scale parameter of a t-Student distribution. (1 � �)!

represents the drift of this process, and � the short memory parameter, ut are the

scores obtained from the t-distribution.

3.3 Modelling Asymmetries

Because �nancial markets do not react in the same way to positive than negative

shocks, most known as impact curve news. Here I adapt the model proposed above
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with the features of the leverage model of Nelson (1991) and Taylor (2005), I will

follow a similar structure, thus a negative impact on the returns will have a greater

e¤ect over the volatility:

yt = exp(�tjt�1 + 
�t)"t; (7)

�t+1jt = !(1� �) + ��tjt�1 + �ut + ��sgn(�yt)(ut + 1);

�t+1 = �t + ���t�t:

It is excepted that the sign to be positive in the stock market since it is a liquid

market and the investor are not much prone to keep their assets in times of high

uncertainty and will probably to sell their values in take advantages in a more secure

market.

3.4 Estimation Procedure

Estimation of the models in (6) and (7) can be achieved using Maximum likelihood

as described in Harvey (2013). Firstly, I independently estimate the RLS process

within the SV model of Qu and Perron (2013). Then, I add this information to the

Beta-t-EGARCH model in order to model further for multiple jumps in the process

of volatility.

Given the demeaned return process, yt; the parameters of the RLS-Beta-t-EGARCH

with asymmetries can be estimated deriving the likelihood with respect of the pa-

rameters  = (!; �; �; ��; 
) and the degrees of freedom �:

lnL( ; �) = T ln �

�
� + 1

2

�
� T

2
ln � � T ln �(�=2)� T

2
ln(�)

�
TX
t=1

�ytjt�1 �
(� + 1)

2

TX
t=1

ln

�
1 +

y2t

ve2�
y
tjt�1

�
:

where �ytjt�1 = �tjt�1+
�t The maximization procedure is made using numerical

optimization algorithms.
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4 Uncertainty Dynamic in the Peruvian Financial

Markets

In this section I present the result for the estimation of the Beta-t-EGARCH model

with random level shifts. I describe brie�y the returns to be used. Hence, I esti-

mate the model in a two-step procedure. Then, I present the main �ndings about

the dynamics of the uncertainty for Peruvian �nancial markets and how good the

proposed model �ts the data.

4.1 The Data

I use daily data from January 1998 to December 2016 for both the stock and forex

returns. The returns are computed as rt = [log(Pt) � log(Pt�1)] � 100, where Pt
corresponds to the Lima Stock General Index and the exchange rate at the end of

the day. The dataset were obtained from Bloomberg and the Superintendent of

Banks, Insurance and Payments (SBS) of Peru respectively.

Some relevant statistics for these series are reported in Table 1. The sample

average for these returns is near to zero, which is common feature in these markets

which is driven by market arbitrage conditions. It is also an indicator of how volatile

are the �nancial series, particularly the sample volatilities are relatively higher for

stock returns. Moreover, these returns evidence asymmetries in its density measured

by a skewness of �0:38. The kurtosis for both returns are high and more than 10.
This evidence the presence of extreme observations which are common in these kind

of �nancial data. As a result, the rejection of normality assumption in this dataset

using the Jarque and Bera (1987) statistic is expected.

4.2 Random level shifts smoothed estimates

Figure 2 and 3 shows the posterior densities and correlograms of the parameters

�; ��; �; p of the SV model for both Peruvian �nancial markets5. I have used 20

000 iterations of the algorithm discarding the �rst half of them. The almost no

correlation in the iterations generated, and the well formed shape of the densities

5For the results in this section, I have used generation of random numbers by default given in
Oxmetrics 6.0.
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suggest an e¢ cient estimation toward the convergence of the true values of the

parameters in this model. Nonetheless, the results reported here robust to several

rational speci�cations of priors since it has been assumed quite general priors and

even di¤use prior for some parameters.

For stock returns and market returns the posterior mean for the size of the shifts,

��, are similar for both series with a posterior mean of 1:68 and 1:66 respectively.

However, the main di¤erence in both estimation comes from the number of level

shifts, for the stock market it ranges from 8 to 19, meanwhile for the forex market

it is rather more frequent going from 15 to 60 shifts. It is re�ected for the estimates

of the Bernoulli parameter, for stock market it is p̂ = 0:003 thus it means that a

level shift occurs each 313 days in average, alike, the stock market has a posterior

mean estimate of 0:001, which implies that a shift happens less infrequently, each

883 days in average.

Figures 4 and 5 plots the level shifts process and also their smoothed probabilities

of occurrence. The biggest change in regime has probabilities close to one and

this constitutes one of the main advantages in this modelling. Standard Markov

switching models are only able to capture transitions between two states. RLS

brings enough �exibility for a richer analysis.

Interestingly, the main upward shifts in both series are associated to main ex-

ternal and/or internal shock which a¤ected the Peruvian economy and its �nancial

markets. It can be distinguished clearly a period of high instability during the ending

of 1990s due to the Asian crisis which a¤ected severely the terms of trade because

Peru at that time was mainly a commodities exporter country. Also, both markets,

by the end of 2005, display a level shift as the markets reacted to the favorite can-

didate Ollanta Humala who was winning the main ballot surveys, and who at that

stage had o¤ered radical policy proposals and reforms, thus main investors stopped

their investments in the country, selling their positions in the stock market and also

leaving less dollars in the economy. These events generated relatively more uncer-

tainty in the stock market, which held high levels of uncertainty until the beginning

of 2008. In contrast, the forex market whose volatility is in some extent regulated

for the Central Bank Peru, shows a regime of relatively stability after around �ve

months.
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A second main event that explains a new high regime of uncertainty was the

external shock su¤ered from the global �nancial crisis. Around June 2008 the stock

market saw unprecedent levels of uncertainty lasting for around one year. It is after

the reaction of the Peru�s government, through a sequence of economic restructura-

tion packages, that the markets could mitigate the considerable e¤ects of the US

crisis. Again, due to the quick response of the Central Bank to maintain stable

level of volatility, this new regime of uncertainty was steeply controlled, and in 2010

it shown an stable regime of low volatility with levels viewed, before the crisis, in

2006. Not surprisingly for the forex market, after regimes of high volatility it reveals

periods of relatively stability due to the action of the monetary authority.

4.3 Fitting RLS-Beta-t-EGARCH models

Table 4 summarize the estimates for the parameters in the Beta-t-EGARCH model

which does not account for level shifts. I focus the discussion particularly on the

parameter of persistence and the t-Student degrees of freedom. Both series presents

high persistence for the stock market it is 0:96, this implies a half life6 of a shock of

18 days. On the other hand, the forex market has a persistence of 0:97, therefore, a

shock to volatility have a half life of 22 days. With respect for the degrees of freedom,

the estimates have a single digit. This means that a big shock will have less impact

over the volatility than a model which assumes normality, hence its importance in

modelling �nancial series which present high level of kurtosis and heavy tails.

Estimates for the model RLS-Beta-t-EGARCH, which adds random level shifts

as an independent explanatory variable in the scale dynamics, is also reported in

Table 4 for both series. We can see how the estimates for the persistence parameter

reduces to 0:912 and 0:855 for the stock and forex returns respectively. Thus, the

half life of a shock reduces to 7 and 4 days. This process can be understood as

a process with a short memory where shocks dissipate quicker. The coe¢ cient for


 associated to the RLS component is estimated at 0:05 for the stock volatilities

and 0:1; for both returns the estimate results statistically signi�cant with 95 per

cent con�dence. This results reinforce my hypothesis that the RLS process is a key

component for the modelling of the volatility.

6Half life is de�ned as ln(2)= ln(�):
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The third last lines of the Tables provides various measurers of adjustment of

the model to the data such as the log likelihood of the model and two information

criteria. According to the values of the log likelihood, there is a gain in the �t to the

data, when RLS are incorporated. We may �nd that because of adding a new in-

dependent process the RLS provides automatically a better adjust. For this reason,

I consider both the Akaike (1973) and the Schwarz (1978) information criteria, de-

noted as AIC and BIC respectively. Both criteria penalize for an increasing number

of the parameters considered in the model. Thus, a lower value from this criteria

indicates a better model adjusted by its complexity. Consider these measures, we

can see a signi�cant improvement in the �tness of the data when using the model

proposed in this dissertation.

For the RLS-Beta-t-EGARCH model with leverage I �nd for the stock market

an expected positive sign leverage with an estimate of 0:014. Indeed, bad news exac-

erbate the stock market and it generates a much greater volatility than the intrinsic

impact of the shock. This is a common characteristic of considerable liquid markets.

On the other hand, we may interpret positive shocks in the forex market as a kind

of depreciative shocks because it rise the level of the exchange rate, which at the

same time generates a loss in value for the national currency. Similarly, a negative

shock implies an appreciation shock of the local versus the foreign currency. I �nd

an estimate of �0:022 for the Peruvian forex market. In line with this estimate
we can infer that depreciations (positive) shocks generates more uncertainty than

the appreciation (negative) shocks. These estimates are consistent with the results

for an SV with asymmetries model in Alanya and Rodríguez (2016). The negative

coe¢ cient indicates that Central Bank has to care more in the volatility generating

from depreciation shocks in its policy to smooth the path of the volatility in this

market. A higher volatility from depreciation can be explained due to the vulner-

ability of a small open economy from speculative currency investors. These new

features contribute to the even better �tness of the data evidenced for a lower AIC

and BIC criteria.

Note that it is not enough to check the adjustment criteria to argue for the va-

lidity of a model. A more objective look how well is the model proposed comes from

the analysis of residuals, this should display similarities with the assumption for the
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error term of the model. To do so, I compute the residuals "̂t from the RLS-Beta-t-

EGARCH model with leverage so that "̂t = yt exp(��̂tjt�1� 
̂�̂t). Then, if the model
is appropriate, the residuals "̂t should display similar properties as the error term

"t which follow a standardized t-Student distribution. Top panels in Figure 7 and

8 shows the kernel densities of the residuals and the assumed distribution. Despite

slightly di¤erence in the peak of the distributions, the residuals can reproduce al-

most all the moments of the error term. It is important also consider if the residuals

are serially correlated. I consider two transformation of the residuals, the logarithm

of the autocorrelations and the absolute values, in order to check for robustness.

From the median and lower bottom of the same Figures, we can see the sample

autocorrelations for both series at all lags, no problems of serial correlation can be

appreciated. This evidence how well the RLS-Beta-t-EGARCH with asymmetries

model the uncertainty of the Peruvian �nancial markets.

The plot of volatilities from this model are shown Figure 6. Although controlled

for multiple regimes, it can be distinguished episodes of relatively higher uncertainty.

For example, between 2008 and 2010, period associated with the �nancial crisis. It

is interesting to see how responsive the stock market is during and before a national

election for the presidency in mid 2006 and mid 2011.

5 Monte Carlo Simulations

In order to validate the robustness of our results through this section I study arti�cial

series generated by a data generating process following the RLS-Beta-t-EGARCH

model. In the �rst subsection I brie�y summarizes how I conduct the Monte Carlo

simulations and in the following subsection I cover the time and spectral properties

of the original and simulated series.

5.1 The experimental design

These experiments will be based on 1000 arti�cial series created from the RLS-Beta-

t-EGARCH model with asymmetries in (12) since it is the model that better �t the

data. First, for the level shifts process, I iteratively generates the observations for

t = 2; 3; :::; T given the value for t = 1 being its posterior mean with the estimates
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obtained in the preceding section so that I generate the simulated random level shift

sequences according to:

~�t+1 = ~�t + �̂� �̂t�t;

�̂t � B(1; p̂);

with the circum�ex symbol denoting the estimates presented in Table 5 for both

Peruvian �nancial markets. Secondly, using these estimates and those for the com-

puted level shifts component, I generate arti�cial series from the Beta-t-EGARCH

model:

yt = exp(�tjt�1 + 
̂~�t)"t; (8)

�t+1jt = !̂(1� �̂) + �̂�tjt�1 + �̂ut + �̂�sgn(�yt)(ut + 1);

ut � beta(1=2; �̂=2); (9)

�t+1 = �t + ���t�t:

I will proceed similarly to Perron and Qu (2010) in their analysis of the time and

spectral properties of the simulated series.

5.2 Spurious long memory?

Once created the 1000 series I analyze the time domain property computing the sam-

ple autocorrelatios and the frequency domain with the log periodogram of Geweke

and Porter-Hudak (1983), for each of the series. The latter consists in the estimate

of the long memory parameter at frequencies j = 1; :::;m: Thus, the jth Fourier

frequency is wj =
2�j
T
and the log-periodogram estimates d for comes from a least

square regression , as follow:

log(Ix;T (wj)) = c� 2d log(2 sin(wj=2)) + "j:

where Ix;T (wj) is the sample periodogram at frequency wj.. According to Perron

and Qu (2010), a log periodogram which exhibit a changing values for d̂ may be
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a signal of a process with no evidence of long memory. In �gures 9 and 10 I plot

the log periodogram for the logarithm of the squares of the original stock and forex

returns.

The three lines graphed from left to the right indicates frequencies at T 1=3, T 1=2

and T 2=3: From the empirical evidence found in Perron and Qu (2010), it can be

appreciated that for the interval m = [10; T 1=3] both periodograms experiment a

sudden decline in the value of the estimate d̂ by approximately 0:2 points, going

from 0:5 to 0:3 in the stock market and in a similar range for the forex market.

From frequencies T 1=3 to T 1=2 it can be seen a steadily decline in the long memory

parameter, although the decrease is more pronounced in the forex market where d̂

decays by a level of 0:3: Further, starting at the frequency T 2=3: both series display

an slow decrease in d̂; though with values below the 0:5 indicating that the process

starts to be driven by a short memory rather than a long memory process.

All these features according to Perron and Qu (2010) characterize a data gen-

erating process consisting in a short memory process plus level shifts leaving less

evidence for models who directly tackles the long memory. Additionally, I com-

pute the sample autocorrelations at all lags it also feature patters of short memory

process with a quick decline to negative values, for then converge to the zero value.

Top panels in Figures 11 and 12 are consistent with this description, being the forex

market more erratic than the stock market. These �ndings are consistent with the

estimates reported in Herrera and Rodríguez (2014) who also analyzes these prop-

erties, but considering di¤erent samples for both series. This is an indicative of the

robustness of the results reported in this section.

Both, the autocorrelation function (ACF) and the log periodograms are calcu-

lated for each of the 1000 arti�cial series. Then, simply are taken the averages

from these results. The bottom panels in Figures 9 and 11 shows the ACF and the

log periodograms simulations for the stock market, meanwhile Figures 10 and 12

for the exchange rate market. At all frequencies from T 1=2 intervals the simulated

series follows the d slow decay. Although at frequencies before T 1=2 the simulated

series does not mimic precisely the patterns observed originally, however they report

values in the same range of values starting from 0:4 which is the main feature for

described the process as a one of short memory and level shifts. Furthermore, the
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ACF follows, in a smoothed way, the trajectory of the original series.

6 Conclusions

This dissertation provides a new approach to deal with series of high persistence

commonly treated in the literature as series with long memory. I analyze a Dynamic

Conditional Score model for modelling time varying volatilities with random level

shifts, the RLS-Beta-t-EGARCH model. This model in contrast to long memory

models assume that RLS plays a signi�cant role for the dynamics of the volatility,

particularly a¤ecting its persistence. The RLS component consist in a probabilistic

multiple change regimen.

In order to estimate the model, I proceed with two steps. Firstly, I estimate

the RLS component from the SV model of Qu and Perron (2013) using Bayesian

algorithm to estimate the parameters involved in the model, and particle �lter tech-

niques in order to estimate the latent processes. Secondly, this component enter as

an independent process into the Beta-t-EGARCH model. The next step involve the

estimation by maximum likelihood of the RLS-Beta-t-EGARCH model parameters.

The present study shows that the major multiple regime changes estimated are

linked to main event that disrupted the Peruvian economy such as a disputed na-

tional electoral process, international crisis as the Asian crisis at the beginnings of

1998 and the more recent US �nancial crisis in 2007. It is noticeable the e¤ect over

the estimate of the persistence in volatilities when random level shifts are included

in the model reducing the impact of a shock signi�cantly. However, the permanent

e¤ects are somewhat controlled by the RLS component. I also modify the model to

include asymmetries, the main policy recommendation comes from the estimates for

the forex market that reveals that depreciation shocks generates more volatility, and

thus, the Central Bank of Peru, which target for a smooth path of the exchange rate

volatility, should be more active (intervening the market) during these episodes.

A look to di¤erent transforms of the residuals such as the log squared and ab-

solute value reveals no correlation, this means that the model is able to �t well the

volatility of the series. A comparison between the density shape of the residuals and

the assumed standardized t-Student distribution of the model implies the model
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capture well di¤erent statistical moments such as the skewness and kurtosis, the

latter being of signi�cant importance in the analysis of the �nancial series.

This dissertation opens up several avenues for further research. Both estimated

volatilities seems to be correlated as they react with major level upshifts and regime

when they face an external shock of consideration. Thus, it would be worthy de-

velop an extension for multivariate multiple regimen and be able to identify common

features and co-movements in times of high uncertainty. In addition, it would be

desirable to estimate a model in a unique step procedure mixing unobserved compo-

nent models and parameter driven models as in Bazzi et al. (2017). I am currently

researching this approach of estimation instead of the indirect two step estimation

adopted here. Further, it may be interesting the modelling of the location at the

same time as the scale of the t-Student distribution and may take advantage from

a more dynamic and richer model.
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7 Annex

7.1 Tables

Table 1. Descriptive Statistics

Values Stock Returns Forex Returns

Mean 0.035 0.005

Median 0.034 0.000

Maximum 12.816 2.209

Minimum -13.291 -2.304

Standard Deviation 1.381 0.248

Skewness -0.377 0.030

Kurtosis 13.946 13.301

Jarque-Bera 23019.87 20234.08

Observations 4589 4576
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Table 2. Values for the mixing distribution "�t �
kX
i=1

qiN(mi; �
2
i )

i qi mi �2i

1 0:0073 �10:12999 5:79596

2 0:10556 �3:97281 2:61369

3 0:00002 �8:56686 5:1795

4 0:04395 2:77786 0:16735

5 0:34001 0:61942 0:64009

6 0:24566 1:79518 0:34023

7 0:2575 �1:08819 1:26261
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Table 3. Priors distributions for SV

Parameter Distribution Prior mean Source

�
�
1+�
2

�19 �1��
2

�0:5
0:86 Kim et al. (1998)

�2� IG(2:5; 0:025) 0:017 Kim et al. (1998)

p Beta(1; 40) 1=41 Qu and Perron (2013)

�2� IG(10; 30) 3:333 Qu and Perron (2013)

P diag(1� 106; 1� 106) Di¤use Qu and Perron (2013)
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Table 4. Parameter estimates for Beta-t-EGARCH with and without RLS

Stock Market Forex Market

Parameter Mean Standard error Mean Standard error

Without Random Level Shifts

! -0.094 0.028 -1.951 0.002

� 0.963 0.008 0.970 0.005

� 0.117 0.011 0.166 0.009

� 6.213 0.804 4.816 0.164

ln L -6795.664 1670.020

AIC 13599.328 -3332.039

BIC 13625.054 -3306.325

With Random Level Shifts

! -0.079 0.021 0.363 0.040

� 0.912 0.013 0.855 0.018

� 0.124 0.009 0.188 0.025


 0.049 0.009 0.093 0.047

� 6.575 0.587 5.155 0.235

ln L -6768.806 1725.901

AIC 13547.613 -3441.801

BIC 13579.770 -3409.658
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Table 5. Parameter estimates for RLS-Beta-t-EGARCH with leverage

Stock Market Forex Market

Parameter Mean Standard error Mean Standard error

! -0.078 0.032 0.313 0.030

� 0.910 0.015 0.855 0.031

� 0.122 0.011 0.187 0.017

�� 0.014 0.010 -0.022 0.012


 0.049 0.005 0.091 0.021

� 6.669 0.348 5.121 0.277

ln L -6764.039 1732.430

AIC 13540.078 -3452.859

BIC 13578.667 -3414.288
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7.2 Figures
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Figure 1. Stock and Forex Returns Series
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Figure 2. SV model posterior densities and correlograms for Stock returns

volatility.
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Figure 3. SV model posterior densities and correlograms for Forex returns

volatility.
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Figure 4. Smoothed estimates of level shifts, exp(�t), and probabilities of level

shifts in the Stock market.
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Figure 5. Smoothed estimates of level shifts, exp(�t), and probabilities of level

shifts in the Forex market.
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Estimated Stock volatilities
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Figure 6. Estimated volatilities for Stock and Forex Returns.
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Figure 7. Diagnostic results for Stock market
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Figure 8. Diagnostic results for Forex market
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Original series periodogram
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Figure 9. Periodogram for original and simulated Stock market
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Original series periodogram

0 100 200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Original series periodogram

Simulated series periodogram

0 100 200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Simulated series periodogram

Figure 10. Periodogram for original and simulated Forex market
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Original series autocorrelations
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Figure 11. Sample autocorrelations for original and simulated log-squared Stock

returns
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Original series autocorrelations
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Figure 12. Sample autocorrelations for original and simulated log-squared Forex

returns
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